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A CYCLIC QUEUEING NETWORK

WITH DEPENDENT EXPONENTIAL SERVICE TIMES

by
*

P. A. Jacobs

Department of Operations Research~Stanford University

Stanford, California 94305

0. ABSTRACT

A cyclic queueing network with two servers and a finite

number of customers is studied. The service times for server 1

form an EARMA(l,1) process (exponential mixed autoregressive

moving average process both of order 1) which is a sequence

of positively correlated exponential random variables; the

process in general is not Markovian. The service times for

the other server are independent with a common exponential

distribution. Limiting results for the number of customers

in queue and the virtual waiting time at server 1 are obtained.

Comparisons are made with the case of independent exponential

service times for server 1.

Support from National Science Foundation under grant
ZNG-75-02026 and the Office of Naval Research under grant
_R-42-284 is gratefully acknowledged.



1. INTRODUCTION

Relatively little in known about queues for which

interarrival tims and/or service times are not independent;

some studies are available however (cf. Vinlar [1967),

Loynes [19621, Pearce [19671, Purdue[1975*I).

one reason for this seems to be the lack of tractable models

for dependent sequences of random variables. Recently, models

have been developed for sequences of dependent exponential

random variables (cf. Jacobs and Levis [1977J). These models

are parametrically relatively simple and are in general not

Markovian. Fortunately, it seems to be easy to model various

types of dependence in queues using these sequences.

The dependent sequence of exponential random variables

is defined as follows. Let (an) be a sequence of independent

random variables each with an exponential distribution with

mean A-,0 Let (J) and {K1 be independent

sequences of independent (0.1)-random variables such that

inl )in 1- nd P(Rm-I) - 1P where 0 <0<1 and

0 p I are fixed constants. For n -12..put

(2~.1) % $n Jn En-1'
where

(1.2) 1n -A.,+ %a

fte slaft it (n) is called an 3A81(l,l) process (exponential

aixo amino average ataoregssiVe both of order 1) and

is caled the amtoregrewlve peat orft.



We will always assume that A0 has an exponential

distribution with mean A-1  independent of all the other random

variables. Under this assumption, Jacobs and Lewis [19771 have

shown that {Xn I is a stationary sequence with exponential

marginal distribution having mean X-1. Furthermore, the Xn '

are positively correlated with

corr(Xn +k ) - kI- ) (1 [0)(I-P) + (l-B)p] k > 1

If B - 1, or 0 - 0 and p -0, then {x is a

sequence of independent random variables. The process {X n

is in general not Markovian although it is if B - 0, in which

case it is called an EAR(l) process (exponential autoregressive

of order 1).

In this paper we will consider the simple case of a

closed queueing network with two servers and a fixed number of

cycling customers N. It is described as follows: when a customer

finishes service at server 1 he joins the end of the queue at

server 21 when he finishes service at server 2, he rejoins the

end of the queue at server 1; the service discipline is first-

in-first-out.

This closed queueing network has been used in computer

studies to model multiproqrasmed computer systems (cf. Gaver

and Shedler 11971)) and one is interested in obtaining, for

example, the long run proportion of time one of the servers

is idle, the average expected busy period of one semvor, and

the average time it takes a customer to complete one cycle

2
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of the network. There is some indication (cf. Lewis and Shedler

[1973]) that the service times for one of the servers should

be correlated. One object of this paper is to show that

correlation of the service times does make a difference in the

limiting behavior of the network.

Let S (respectively Xn ) denote the nth service
nn

time for server 2 (respectively server 1). There are many ways

in which to use EARMA(l,l) processes to model dependence within

each sequence of service times and cross correlation between

the two sequences. In this paper we will assume that {Sn }n
is a sequence of independent random variables each with an

exponential distribution with mean V- 0 < and {Xn
A-l

is an EARMA(l,l) process independent of (Sn } with mean A

0 < A < M, and parameters 8 and p. Other queueing models

using EARMA processes will be considered elsewhere.

Let Z(t) denote the number of customers both waiting

and being served by server 1 at time t. The process

Z - {Z(t); t > 0) takes the values {0,1,...,N). Let W(t)

be the virtual waiting time at server I at time t; that is,

W(t) is the sun of the service times of the customers in queue

at server I at time t and the remaining service time of the

customer currently being served.

in the next two sections we will obtain limiting results

for S(t) and W(t) as t . for the case N - 2. We will

shw that the limiting distribution of 3(t) in the UARa

case s the same m I n the oae An which the service time of

serve I awe iadoe et this result is also true for the case

3



N - 1 and seems to be due to the constraints imposed on the

network by having only one or two customers. The long run

average virtual waiting time is then computed for the case

N - 2 and is found to be different from the independent case.

This is because the positive correlation between the service

times of server 1 tends to increase the virtual waiting time.

In Section 4 we analyse the network for N > 2 customers

and show the existence of a limiting distribution for Z(t)

as t * -. We then present some simulation results for the

limiting distribution of Z(t) as t + for the case N = 5.

The results show that the correlated service times do make a

considerabla difference in the limiting distribution.

2. THE TWO CUSTOMER CYCLIC QUEUE

in this section we will study the process Z - {Z(t);t > 0}

and obtain the limiting distribution of Z(t) as t * m for,

the queueing network of Section 1 with N - 2.

2.1 Prelisninaries

We define here thre sequences which will be needed

in the analysis. For concreteness we will always aum . that.

(0) a 0. Lot 'Tn be the Increasing sequence of arrival and

daparture time for server 1 that includes all departure time.



and those arrival times at server 1 that occur when server 1

is idle. Let Yn be the number of customers both waiting

and being served just after time T n  More precisely put

Y = Z(O) = 0 and To = 0 and define Yn' Tn. n > 1,

recursively as follows. If Yn = 0, let

(2.1) T n+ = inf{t > T n:Z(t) = 1}, Yn+l = Z(T n+l+0) =1.

If Yn > 0, let

(2.2) Tn+i = inf{t > Tn:Z(t) < Z(t-)} , n+l = Z(T n++0)

For example, since Z(0) = 0, T1  is the time of the first

arrival of a customer to server 1 and Y is the number of

customers at server 1 just after time T which must be 1;

T2  is the time of completion of the first service for server 1

and Y2 is the number of customers both waiting and being
served at server 1 just after time T2; the number could be

0 or 1. In general, if Y > 0, then T is the time ofn n+1
completion of the next service for server 1 after time T n

and in+l is the number of customers both waiting and being

served at server 1 just after time Tn+l . If Yn - 0, then
Tn+1  is the time of the next arrival to server I and Yn+l = 1.

Note that since we are considering the case in which N - 2,

Yn can only take the values 0 and I.

Let Aft denote the autoregressive part of the next

se"vice to be ealeted after tio Tn. Nore precisely, put

L 0 and recursively d Lk+l inffn > LkYn -0)

mS
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L k is the index of the kth time that Y n = 0. Then since

Z(0) - 0, A 0 M A0, A- and A n A-- o

L(k) < n < L(k+l).

Since the service times at server 1 are dependent random

variables, the dependence of {Z(t); t > T n on {Z(t); t < TIn

is not only through Y n but also through the service times that

were completed before time T n. However, by (1.1) and (1.2),

{Z(t); t > T n is conditionally independent of {Z(t); t < T nI

given (A n'Y n) Further {(An'Y n )} is a discrete time Markov

process with state space (R + x {0,11, a(R+ x {0,11)) where

3R [ 0,oo1, 0 denotes the Borel subsets of 3+ and

a(+x (0,11) denotes the product a-algebra generated by l
and the subsets of {0,11.

Let

P..j (x,B) =P{A E~ (B, Y l-jIA-n=x1 Yn

and P(x,B) be the matrix whose i,j entry is P i,(xB)

for i, j ( (0,11, x ( It+ and B The transition

probabilities, P 1 j(xB) are easily derived. If Y n n 0,

then Tnlis the time of the next arrival after time Tn

and hence Y l 1 and A n+i =An. If n-l1 and there is

an arrival during the service time Tn.1 - Tn, then nl 3

if there is no arrival during the service time Tn~ - Tn

then Y - 0. Since (Xn I is an BA M (1,l) process and

(Iisa sequence of independent exponential random variables

with man 1A we have the following matrix

6
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0 6 X(B)

(2.3) P(x,B) =

Efe 1 ;A1 EB (A 0 =x] E[-e 1 ;A1 EBIA0=x]]

where 6 (B) is 1 if x E B and 0 otherwise.x

We will now define other processes related to [An ,YnT n

which will also be used in the analysis. For Tn  < Tn+l,

let Y(t) = Yn' A(t) = An, and U(t) = t-T n . Note that Z(t)=0

if and only if Y(t) = 0; Z(t) = 1 if and only if Y(t) = 1

and there is no arrival at server 1 in the time interval

(t-U(t),t]; and Z(t) = 2 if and only if Y(t) = 1 and there

is an arrival in the interval (t-U(t),t]. Hence the limiting

behavior of Z(t) as t = is related to that of

(A(t),Y(t),U(t)). Furthermore, the limiting behavior of

(A(t),Y(t),U(t)) depends on that of (AnYn) . As a result,

we will first compute the limiting distribution of (An ;

then use it to compute the limiting distribution of

(A(t),Y(t),U(t)); and finally compute the limiting distribution

of Z(t) as t

2.2 Limiting Properties of (A

Fix a Sorel subset B of R+ with positive Lebesgqu

measure. From (1.2) it follows that JAn } is a discrete time

Narkov process. To show that the process is recurrent note that

expression (6.2) of Jacobs and Lewis (19771 for the kth order

transition probability Qk of fA I implies that for each

7



b > 0 and 0 < 6< f Xe- Xx dx there exists a k such that
B

inf Qk (x,B) > 6.
x( [O,b]

Hence

P( U {Am E B)IA0 - x) > 6, x E R+m-1

Therefore, by Proposition (5.1) of Orey [1971]

P(Ak E B infinitely oftenjA 0 - x) - 1

for all x and thus {A n is recurrent with respect to

Lebesgue measure in the sense of Orey [1971, page 41.

Since the service times for server 2are independent

with common exponential distribution, a similar argument shows

that

(2.4) P{A n ( B, Yn ij infinitely often A A0-x, Y0-i} - 1

for i, j ( {0,1}, x 3 +. Thus, by Theorem (7.1) of 0rey

[19711 there exists a possibly a-fiuite invariant measure

{wj(B); j - 0,1, B E for the transition probability of

((An,Yn 1.
n( nn)

The invariant measure satisfies the following system

of eq~tions

K8



ir '(dx' P00 (xB) + fwl(dx) P10 (x,B) - r(B)0 0

W 1r(dx) P *(x,B) + W rr(dx) P11 (x,B) w ir(B)

Rewriting the two equations using the matrix (2.'3) yields

-jj
(2.5) w 1r(dx)E~e A; I BIA 0 xI r 0 (B)

0

(2.6) w0 (B) + f ir (dx) E[ll e 'A DA 0ix 11(B)
0

Substituting the expression for w (B) from (2.5)

into (2.6), equation (2.6) becomes

(2.7) f 7r (dx) P(A1 E BIA =x) = r(B)

By the result after (6.2) in Jacobs and Levis [19771, equation

(2.7) implies that

(2.6) W (a) aIA*- Y dY
B

for any non-negative constant c. Substituting the expression

for w1 into (2.5) we have



(2.9) W0 (B) - c f e - x Ele 1 1 A1 E 31A0-x] dx.
0

We now want to choose c so that w is a probability and

hence w i(B) - h1n'm P(An E B, Yn-i}. To this end we set

1 = 1l(]R+) + f0(It+

cil + f Xe" IxX E[e- 1A 0 -x] dx]
0

- c[l + X(A+P) -1

since, if A0  has an exponential distribution with mean A- 1

so does X1 . It now follows that c -

This result will be used in the next subsection to compute the

limiting distribution of (A(t),Y(t),U(t)).

2.3 Limiting Properties of an Imbedded Semi-Markov Process

Since {(AnYn),Tn) is a Narkov renewal process in the

sense of jinlar [19751, {(A(t),Y(t),U(t));t > 0) is a Narkov

process. Hence, {(A(t),Y(t)) t > 0} is a semi-14arkov process

of the second type in the sense of Jacod [19731. We will use

the results of Jacod (19731 to compute the limiting distribution

of (A(t),Y(t),U(t)) as t 4 a which will then be used to

compute the limiting distribution of 1(t).

Since (6 n and {B) are independent sequenoes of

independent exponential variables, the process (A(t) ,Y(t))

is right continuous with left hand imaits satisfying the

10iJ____,o_



hypothesis R-3 on'page 85 of Jacod [19731 concerning the set

of discontinuity points of (Aft),Y(t)). Furthermore,

{((t) ,Y(t))it > 01is recurrent in the sense that, if

8 has positive Lebesgue measure, then

P{ f i 1 Y(a) 1 o A(a) do mA 0 - X, Y i

for. i, j C (0,11 and x ( JR+ where lBx) is 1 if x 9

and 0 otherwise. Therefore, Theorem III-10 on page 103 of

Jacod (19731 applies to show that

(2.10) v (B xC) -d f w (dx) f e1 P5 WBX 1c sds

0 0cs~s

(2.11) v (B x C) -d f r(dx) JP(X > s A0 x 1)1(W1x s)do

B, C E5.is an invariant measure for the transition function

of the Narkov process ((A(t),Y(t),U(t)h;t > 0) for any

d > 0.

We will now choose d so that vi, i - 0,1, is a prob-
ability. Put

1 V (it 2 ) + V(R2 dj-1 3 +C0 + 1 R~ I + [~ w0 ( + c 1

+ AAM



(2.12-) do Au- ~ )( A1

2 2-1
and d Au)ji+2z)( P X+

2.4 The Limiting Distribution of Z(t) as t -

Using (2.10), (2.11), and (2.12) we can now compute the

limiting distribution of S(t), the number of customers both

waiting and being served at queue 1, at t - .Recall

that we are considering the case W-12 and, therefore, Z(t)

has the values 0, 1, or 2.

Fro the arglument after (2'.3) it follows that

(2.13) lizu P(Z(t)inOjZ(0)uiOl limr P{Y(t)m0IY(o).m0} v (3R2

A)2 [ 2 +AU + U2 ]-1~

t t

ffti~cds) e4'as

- + + -1

by (2.11) and (2.12); and finally

'V ~'12



00(2.15) 113 P{Z(t)i212().") - 11. E((le-U(t) )MO-uhlY(O)l

P21jA2 + AV + P21_

note that the limiting distribution for the numb~er of

customers vaiting or being served by server 1 with EARK(ll)

service time is the same as if the service times for server 1

were independent random variables each with an exponential

distribution with mean A~ (cf. Gayer and Thompson (19731).

We feel that this is due to the constraints imposed on the net-

work by having only two customers. This conjecture is shown

to be true by the simulation results of Section 4 where it

becomes clear that the result is not true if N > 2.

3. THE VIRTUAL WAITING TIME FOR THE CYCLIC QUEUE WITH TWO

CUSTOMERS

In this section we will compute the long run virtual

waiting time for server 1 in the case in which the service

times for server 1 form an B&RM(l~l) process and there are two

customers in the system.

The virtual waiting tim for server I at time t, 11(t).

is the sun of the servioe tims of the customers in queue at

server I at timet plus the remaiaing service tim of the

customer currently bei4 pervod. To 4sfitte W1(t) onre precisely,

13



let N(t) -sup(n:T~ n t) If 2(t) in 1 or 2, then

V(t) - TN(t)+1 - t is the time from t until the completion

of the current service. If Z(t) - 2, then TN(t)+2- TN(t).l

is the length of the service time for the customer who arrived

at server 1 in the time interval (t-U(t),t). Bence, the

virtual waiting time at time t is defined formally as

0 if 2(t) - 0

(3.1) W(t) =-~t V(t) if 2(t) - 1,

IV~t + N(t)+2 - TN(t)+l if 2(t). - 2

From (3.1) it follows that {(A(t),Y(t),Z(t)#U(t),,V(t),q(t));

t >0) is a Markov process. Further, the process in recurrent

in the sense of Mazma, Duflo, and Revuz [1969). Thus by the

ergodic theorem in Section (3.1) of that paper, there exists a

constant W such that

(3.2) W- urn 1~~d

P(-IA(O)-X, 2(O)00)-almost surely and'

(3.3) 1- im 12 W()dl 0 x 5(b) -0

for aleat all X. We will WMe ('3.3). "to o"UteV.

Vfioto fgO6 (3.1) and the avqvifnt after (2.3)

14



(3. 4) B1(5() I A(0) -x, Z (0)-0J

-EMVS)e-IUs ; Y(s)ulIA(0)mx, Z(0)=OJ

+E[V()+(N()+- TNSl )(1 -e-VU(s) ) Y(a)-lIA(O)-x,Z(O)=0J

-E[V(s);Y(s)-lIA(0)-x; z(O)-OJ

Noe will first compute

(3.5) liz ItI J E[(s); Y(S)=lIA(0) - x, Y(O) - 0] da
t.* 0

Since (A(t),Y(t),U(t)) has a limiting distribution as t -

by the proof of Theorem III-10 on page 105 of Jacod [19731,

w have that

i(D) - i. P(Y(t)=l, (A(t),U(t),V(t)) (DIA(0)=x,Y(0)-01
t.

exists and equals

ad -. -Az dz I P(X1  dyIjuz} dx lD~zxYx

0 0

where D is a Sorel subset of IR . By the ergodic theoremn of

AAa, Duflo and Rowsz, (3.5) equals

(3.6) J la(dedy,ds)s a ,a(A~u)[A(A 4.Ai+ 2 )Jl

By (1.1) a"d (1.2), the seocad toga of (3.4)



E 3CN a)+2( 1...*1u (s)); Y(s)umlJA(O)mx, Z(O)-OJ

+ (l-0)E~pA(s) (1 *eIuu(s) ) Y(s).ljA(O)mx, Z(O)-Oj

Since EN(s,+2 is independent of (Y(s),U(s))

(3.8) Ilrn NCW(+C(Ie-O~) Y()lIA(O)x,CO)mO~du

X-1  Ira 1 f PJz~s)m2lA(O).x,(O)mO)ds

v ~2 IM 2+uu2W

by (2.15) and the previously cited ergodic theorem.

The ergodic theorem also implies that

(3.9) 1l ZxI)(--u(m)Y s) (l)-x.Z() Ol

t 16



-cd 2ex dz I[OP(8e1 > x}+(l8)P{81> X01 (l4etx)dx
0 0

(AI () +XP+Uj J(X+V)VX+O~aj 1

X112 D3X 2 +2Ai+0(2Ap+2u 2 _ A 2 ) +802 (-2Xpjj-i 2 A 2)

by (2.11), (1.1) and (1.2).

We now turn our attention to the computation of

(3.10) liii SI EcC),(1-e ~~);Y(s)m1IA(O)=x,Z(O)=O~ds

First, note that (A Y 'C, n is a discrete time Karkov process

with limiting distribution W (BxC) - 1i(9) IC ke dx for

B, C R Hence, by similar arguments to those in subsection 2.3,

(A(t),Y(t),EN(t)+l.U(t)) has a limiting distribution

Further, for B, C, D E lby Theorem 111-10 of Jacod

S1 (BxCxD) -df ir1(da) D~ 1x f Px >sA0-,C I-x)ds

d f 11r(dz) f Ae-'xdx (8l (SIP*-) (Ox)+(l-O)1 (Ox+x))ds
aC D

for som constant d by (1.1) and (1.2).

To evaluate 1.note that

v(IBxD) a- ' 1 (a x It+x 0)



Hence, from (2.8) and (2.11), d -d. By the ergodic theorem

again, (3.10) equals

(3.11) 1 1 (dz,dx,ds) x(l-e)
B3

MA (V 2 +1pu+u 2 )~p) - 2 [A(1+0+02) + Uf0+0 2)

after some simplification.

Putting together (3.3)-(3.11) we obtain after some

simplification

(3.12) [11+p+2 )

* 2

2 -1 222

+(1-0)u 01+V) (1+Ou) 1{[10 A(L+)+0 2(X+P) 2

+p[2x(x+v)+O(-2 2 +12 )-20 2 (X+U)
23

Putting y - AU1 the traffic intensity, (3.12) becomes

(3.13) ( 2+y) (y 2 "+1) d1+ 61-0) 1(Y 
2 +Y +)(Y+1)(y+o 1)J1

X((OY(Y+1)+0 2 (Y+I) 1+p(2y(y+l)+O(-.2y +U-20 (Y+1) I).

it 0 a I, then the service tims for soror 1 atre

ts eMbfent ezpownntua. uMI&@ 4ROOKW wteL I-M n

4'77



AD

as expected in this case. Note that W > Wind and, hence,

the positive correlation of the service times increases the

average virtual waiting time. Also there is a 0O such that

for 0 < 00 increasing p increases 1; while for B > B0

increasing p decreases V. The value 00 .is a solution to

the quadratic equation

(3.15) -2(y+l) 2B 2 + (-2y+1)0 + 2y(y+l) - 0

and hence depends on the traffic intensity 'v

To give an idea of the effect of different B and p

on W we give Tablelwhose entries are differences between

and Wind for various values of B and p for X=P 1 .d

in this case).

0\O 0 .1 .3 .5 .7 .9

0 0 .03 .09 .11 .10 .04

.1 .05 .07 .10 .11 .09 .04

.3 .15 .15 .14 .12 .08 .03

.5 .2S .23 .18 .13 .08 .03

.7 .35 .30 .21 .13 .07 .02

.9 .45 .38 .25 .14 .06 .01

UeL IL. Valuesof V in I for the case A P -l.

k . t



Note that it is the autoregressive part of the EARMA(l,1)

service time that causes the most change in W. As expected,

for B small W increases with increasing p; for 8 large

W decreases with increasing p; the value at which the change

occurs, 80, is .55 in this case.

4. THE CYCLIC QUEUE WITH A FINITE NUMBER OF CUSTOMERS

In this section we will study the queueing network of

Section 1 in the case in which there are N > 3 customers. We

will use without mention previous notation adapted to the

present case. As before, we are interested in the limiting

distribution as t - - of Z(t), the number of customers either

waiting or being served at server 1 at time t. Again, we first

consider the discrete time Markov process {(An,Y )) which nown n
has state space (R+ x {0,l,...,N-l, a(:+ x {0,l,...,N-1}))

where a(#+ x (0,1,...,N-1}) denotes the product a-algebra

of the Borel subsets of R+ and the subsets of (0,l,...,N-l}.

Lot Pij(x,B) - P(An+1 ' B, Yn+l-J lAn-X, Yn-i} for +

x ( ]+, and i, j ( 0,l...,N-ll. If P(x,3) denotes the

matrix whose (i,J)-entry is P1 (xB), then it is not har to

show that
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0 6 x(B) 0 . .. 0 0

bo (xD) b 1 (xB) b 2 (xB ) b3 2 (x, B) aN_1 (x, D)

o b 0 (x,B) b 1 (x,B) bN-3 (XB) aN-2 (x'B)l

o 0 b 0(xB) bN-4 (x,B) aN-3 (x'B)

P(xB)

o o 0 b0 (xB) a1 (x,B)

where

bk(XB) = -U NY ( k ;A~ BfAO~x]

and

a OxB) b n (xB)
n-k

By similar methods to those of subsection 2.2 one can show

that there exists a possibly a-finite invariant measure for P

which satisfies the following system of equations for B 1+

(4.1) J ir(dx)b (x,B)inw (a)
0 0

(4.2) 1wo(dx)6 (B) +f Ir1(dx)b 1 (x,)+f W 2 (dx)b 0 (x,B)mir1 (B)
o 0 0
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(4.3) f ,(dx)b 2 (XB) + f 7r2 (dx) b1 (x, B) + f r3 (dx)b0 (XR)mn 2 (B)o 0 0

(4.4) f Tl(dx)a Nl(xB)+fW 2 (dx)a N-2 (X,B)+-*+f7r N- (dx)a (X3)- N-1l(W.
0 0 0

Substituting the expression for w 0 (B) of (4.1) into (4.2)

and then adding all the equations except (4.1) together yields

the equation

[f [r+W 2 +.+iN1I(dx) P(A1 ( 31A0"'x} 1 f+2+ .+,rN -] (B)

By the result after (6.2) of Jacobs and Lewi. 11977] we have

-1 1  ... * Nl11(3  - r "If s' dx

for any constant c'. Hence, we can and wili choose c' so

that the invariant measure w is a probability,

We will nov consider the limiting distribution of S(t)

as t 4.*Let X(t) be the nmber of service completions by

server 2 in the time interval It -U(t) ,tl.- since the sewviee

times of server 2 are independent each vith the sowe exponential

distribution f(A(t),Y(t),U(t)#X(t))#t > 0) is a Narkov process.

Vote that f(tM0) a {Tftwo),

29
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(Zt)-il U (Y(t)-kK(t)-i-k} 0 < ± < N;
end k-i

N-i
(Z(t)-NI U {Y(t)-k,K(t)-N-kl

k-i

Thus, using the techniques of subsections 2.3 and 2.4 one can

show that

v(O) - i. P{Z(t)-0IZ(O)mO,A(O)mOl w 0i~ (3R.+)
t *

vCN) - i. P(Z(t)-NIZ(0)-O,A(0)-O)

wk (y P-1 [(X 1L > asI Ain -d';

k-i 1 J-N-k

and

v(i) - i P{(t)-ilZ(O)-O,A(O)-xl

0 i-k

-~~ woOlk~dy) I P{X 1 >BIA0 -y) ~ ~

for sope positiv, constant a
It seeas difficult to solve (4.1)-(4.4) for i

i - O,...ON-l. Hlence, we are unable to obtain explicit expressions

for the limiting distribution of 3(Ct) as t .. an we could in

the a** 3w-. We will, however., give som slaulattom results

to indicate the limiting behavior of 5 (t) ast. for higher
* values of N

!siulaton Is based an Ose folea obeervatiomj

tS~ei~ aerizvios "on of 'ueg r 2 wve -II sMat aid aetU

3
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distributed ((A(t),Y(t),U(t),Z(t))it > 0) is a markov process

that satisfies the hypotheses of the ergodic theorem of Azima,

Duflo and Revuz [19691. Hence,

Ilim 1 1 1{ WZsds - v(i), i - pe,
t 00 0 lo

almost surely P(.IA(O)mx, Z(0)umO). Further, if T M is the

time of completion of the Nth service time for server 1, then,

since T as N -. almost surely with respect to

P( IA(O)"'x,Z(O)=0)

(5.5) i, fL 1 l 9~Z(s)ds - ji(i), i 0,.,

almost surely with respect to the same probability.

The following results are from a simulation designed

by Professor P. A. W. Lewis at the Naval Postgraduate School,

Monterey, California for a closed queueing network having

EARM(l,l) service times. The simulation we used consists of

the computation of

M,

for X equal'to the 5000th service time. The computation was

repeated for 100 idepen dent repliostions and the s"*moma

azd Variince over the'1006 replications were aoqated. All.

runs wore performed an an IBM system 340/67 omutera ot~
irthe LMDNpI (ss8

ne.l.toPs<s



and Lewis [19731) which generates numbers according to the

scheme given by Lewis, Goodman, and Miller [19691 and

exponentially distributed random numbers using the Marsaglia

"rectangle-wedge-tail* method. Tests of the random number

generator are given in Learmoath and Lewis [19741.

Table 2 gives the results of a simulation of the queueing

network for the case N-5 and A-I-1. The entries in the table

are the sample means of (5.6) over the independent replications

for different values of B and p. The numbers in the

parentheses are estimates of the standard deviations of the

estimate of v(i). For comparison, note that the limiting

distribution in the case in which server 1 has independent

exponential service times and X=--l is

(5.7) 1im P{Z(t)-i) - 1/6 = 0.1666, i - 0,...,5
t "

(of. Gaer and Thompson [19731). This corresponds to the case

0 - 0, p - 0 in the first line of the table.

Note that again it is the autogressive part of the

service times that causes most of the change in the estimates

for the limiting distribution of Z(t) as t * . The

positively correlated service times increase the probabilities

of server 1 or server 2 being idle; they also increase the

probability of all customers being in one or the other service

center. This ems to be due to the fact that, if p is large

and 0 is small, then having a large service time at one time

25
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1 0 12 3 45

80 p- 0 .17(.009) .17(.007) .17(.005) .17(.006) .17(.007) .17(.009)

.1 .18(.01) .16(.007) .16(.005) .15(.005) .17(.007) .17(.01)

.5 .21(.01) .13(.006) .12(.006) .12(.005) .18(.007) .21(.01)

.9 .26(.02) .11(.01) .079(.006) .088(.006) .20(.01) .26(.03)

0--l p- 0 .17(.01) .16(.008) .16(.005) .16(.005) .17(.007) .17(.01)

.1 .18(.01) .16(.008) .16(.005) .15(.005) .17(.007) .17(.01)

.5 .21(.01) .15(.007) .13(.006) .13(.005) .18(.007) .20(.01)

.9 .25(.02) .13(.01) .092(.006) .10(.005) .18(.01) .25(.03)

B-.5 p- 0 .18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)

.1 .18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)

.5 .19(.01) .17(.007) .15(.006) .15(.006) .16(.007) .18(.01)

.9 .20(.02) .16(.01) .14(.007) .14(.006) .16(.01) .20(.02)

0-.7 pm 0 .18(.01) .17(.007) .16(.005) .15(.005) .16(.007) .18(.01)

.1 .18(.01) .17(.007) .16(.005) .15(.006) .16(.007) .18(.01)

.5 .18(.01) .17(.008) .16(.005) .15(.006) .16(.008) .18(.01)

.9 .18(.01) .17(.009) .16(.006) .16(.006) .16(.009) .17(.01)

0-.9 p- 0 .17(.01) .17(.007) .16(.005) .16(.006) .16(.007) .17(.01)

.1 .17(.01) .17(.007) .16(.005) .16(.007) .16(.007) .17(.01)

.5 .17(.01) .17(.007) .16(.00S) .16(.006) .16(.008) .17(.01)

.9 .17(.01) .17(.008) .17(.005) .16(.006) .16(.008) .17(.01)

TABLE 2. Estimates for the limiting distribution for the umber of customr

in queue for 3in5 customrs and Amwi-1 when server I has RARK&(1.1)
service time and server 2 has Iddepadat exponential service tiame.
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implies that the service times will tend to be large for a

* while; having a small service time implies that the service

times will tend to be small for a while. The dependent service

* times appear to have little effect on the long run average

number of customers that are waiting or being served at server 1;

the average is 2.5 for all values of (O,p) except the values

(0,.9), (..5.and (.l,.9) for which it is 2.6. This

invariance reflects the fact that the change in the limiting

distribution {v (i))I due to the dependence is somewhat

symmnetric in i.

Finally, we present in Table 3 the results of a simulation

to investigate what happens if the service times of both servers

are independent EARMA(l,l) processes. In that simulation

tne number of customers N is 5 and the parameters for the

EABMA(l,l) service times for server 1 are -. 1 and p, -. 9.

The parameters 82 and p2 for the RBM(l,l) service times

for server 2 are allowed to take on several values. The

expression (5.6) is computed for N - 10,000 for 750 independent

realizations. The entries in the table are the values for this

simulation of the sawe quantities as in Table 2.

i 0 1 2 3 4 5

420-le 02- .249(.02) .130(.006) .0904.0@W .100(.004) .1S12(.009) .2*94.016)

a 2-.1 P2 . 26(.017) .142(.07 .070(.403) .00S4.00)4 () .25(I.017)

TAW& 3. Letiates of the limiting distribution for the mwfr
of cutors in qum" for WS. oustems and Awyal.

iuetw squsaes* of servie time wre aseit

UAUS1,l)Proceses.
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Note that the positive correlation of both sequences of

service times tends to make the probability of server 1 being

idle and the probability of all customers being at server 1

larger than when only one sequence of service times is

positively correlated. The change in the limiting distribution

v(i) is again somewhat symmetric in i. The long run average

number of customers waiting or being served at server 1 is

2.5 if 02 - .I, P2 - .9 and 2.6 for the other values of

(02,P 2 )•

It is clear from both simulations that the limiting

distribution for number of customers at server 1 is quite

sensitive to serial correlation in the service times. The

simulations indicate that perhaps v(O) v(5) in the case

A - -=1. It can in fact be shown that in general

Al - v(O)) - l - v(N)].

5. CONCLUSIONS

In this paper we considered one scheme for using EARMA

processes to model dependence in queues. We find that the

introduction of dependence does affect the limiting behavior

of the queue. There are, of course, many other schemes and

so of the"e will be ceosidese elewbre. Two advantages

*f uaing ten aRMUA proms*os is quees are the ease of intzo-

hu ; dc in the a-@@$ "A, te, ease of sioat"n

the proesses. The majot drmubak to using SUM processes

: • ,, s ,, . . - ! . ! , . ! ** \ ,,



in queues is the difficulty of obtaining the exact analytic

results. It is expected, therefore, that approximation

techniques and simulation will be of major importance in

analysing these queues.

6. ACCNOLEDGMENT

I would like to thank Professor P. A. W. Lewis of

the Naval Postgraduate School, Monterey, California for his

helpful ooinnts and for the use of his simulation in

Section 4.

i2



p REFERENCES

AZEMA, J., DUFLO, 14., and REVUZ, D. (1969). INssure, invariant*
des processus de Markov recurrents. Seminaire Prob.
StasouIII, Lecture Notes in Mathematics, 13',
3pIrigrVerlag, Berlin, Heidelburg, and New York.

JINLAR, E. (1967). Time dependence of queues with semi-Markovian
services. J. Appi. Prob. 4, 356-364.

(1975). Introduction to Stochastic Processes, Prentice-
Hall, New Jersey.

GAVER, D.P. and SHEDLER, G.S. (1973). Processor utilization in
multiprograimmed systems via diffusion approximations.
Oper. Res. 21, 569-576.

GAVER, D.P. and THOMPSON, G.L. (1973). Probability and
Programing Models in Operations Reerh ros/Cole
Pub. Co., Monterey, Calif.

JACOBS, P.A. and LEWIS, P.A.W. (1977). A mixed autoregressive-
moving average exponential sequence and point process
(EARMA 1,1). Adv. Appl. Prob. 29. 87-104.

JACOD, J. (1973). Semi-groupes et mesuires invariantes pour
les processus semi-markoviens a espace d'etat quelconque
Ann. Inst. Henri Poincare 21 77-112.

LEARMONTH, G.P. and LEWIS, P.A.W. (1973). Naval Postgraduate
School random number generator package LLRANDOM.
Naval Postgraduate School Report NPS5SLw73O6lA.

LEARNONTH, G.P. and LEWIS, P.A,.W. (1974). Statistical tests
of some widely used and recently proposed uniform
number generators. Proc. Seventh Conference on

$ Computer Science and Statistics, western Vuriocicals
Co., north Hollywood, Caif,

LEWIS, P.AoW., GOODUMN, A.S. and MILLER, 3.14. (1969). A pseudo-
random number generator for the system/360. I~BM
System Journa 1, 136-146.

LEWI3, P.A.W. and SHEDVLEI, 0.5. (1973). Empirically derived
inicroinodels for sequences of page exceptions. IBM
J. Res. Develop. Up' 86-100.

LOYMS, R. X4. (1962). Stationary waiting time distributions
for single server, queues. Am,. Math. Statist. Ale-

30



OREY, S. (1971). L imit Theorems for Markov Chain Transition
Probabilities, Van Nostrand Reinhold Co., London.

PEARCE, C. (1967). Queues with moving average service times.
J. Appi. Prob. 1, 553-570.

PURDUE, P. (1975). A queue with Poisson input and semi-Markov
service times: busy period analysis. J. Appi. Prob.

L,353-357.


